
Xtables2: Love for blobs

Jan Engelhardt <jengelh@inai.de>

Presented at NFWS 2010

2010-Oct-18

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 1 / 1



Table of Contents

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 2 / 1



Introduction

Section TOC

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 3 / 1



Introduction Xtables1

Current status

ip_tables started with a packed serialized ruleset (“blob” – binary
large object)

ip6_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!
Changes to ip_tables could still be mirrored to ip6_tables and
arp_tables
ebtables took its own incompatible path of development
Combined with compat support, there are now formats to support in
the kernel
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ip6_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!
Changes to ip_tables could still be mirrored to ip6_tables and
arp_tables
ebtables took its own incompatible path of development
Combined with compat support, there are now seven formats to
support in the kernel
A big itch to scratch.
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ip6_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!
Changes to ip_tables could still be mirrored to ip6_tables and
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ebtables took its own incompatible path of development
Combined with compat support, there are now eight formats to
support in the kernel
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Introduction Xtables2 ideas (some)

A protocol-independent format

Rule tree without protocol-specific parts in it, to be used by and for
all protocol handlers
Translatation from and to input formats on-the-fly, i. e. during
SO_SET_REPLACE/etc.

Formats are just minimally different: serialized stream of struct
ipt_entry vs. struct ip6t_entry

⇒ Led to Xtables2
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Introduction Xtables2 development history

Developments

SSA/LL1,2 style:
“proto1”: initial submission on 2009-Aug-04 for v2.6.31-rc
(103 patches)
busy dealing with cleanups: 46/103

“proto2”: partial set posted on 2010-Jun-04 for v2.6.35-rc
(33 patches, and a nasty surprise)
“proto3”: simple rebase for v2.6.36-rc for better comparison with the
upcoming proto4

PCR style:
“proto4”: xt2 using packed-chain rulesets, for v2.6.36-rc

1Small scale allocations, or small scattered allocations, combined with linked
lists

2Has nothing to do with GCC’s SSA
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Xtables2 SSA prototype Data layout

Chosen data layout

Linked lists allow for “easy manipulation” of the ruleset
Small-scale allocations (SSA) are more easily satisfiable.

Prototype: Translators work nicely, and with a bit of macro magic,
eliminated 40% of LOC from the {ip,ip6,arp} combo.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 8 / 1



Xtables2 SSA prototype Data layout

Chosen data layout

Linked lists allow for “easy manipulation” of the ruleset
Small-scale allocations (SSA) are more easily satisfiable.
Prototype: Translators work nicely, and with a bit of macro magic,
eliminated 40% of LOC from the {ip,ip6,arp} combo.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 8 / 1



Xtables2 SSA prototype Test #1

Ruleset

Just a simple ruleset that would be large enough so that wall time is
visible

Just struct ip6t_entry, but lots of them
-A $chain -s ::1 -d ::1

no extensions, just struct ip6t_entry × 1000 rules × 100 chains
reachable from INPUT (OUTPUT is left empty)
100,202 rules (100,000 base rules + 100 calls + 100 implicit invisible
RETURNs converted from Xt1 + 2 implicit Xt1 RETURNs from base
chains)
≈20 MB in packed form
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Xtables2 SSA prototype Test #1

Comparison with real rulesets

Jesper has down-to-earth rulesets:

67,892 visible rules in 18,329 chains: rule density distribution
> summary(data)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 2.000 3.745 4.000 119.000

Packed size is 16,866,200 bytes
Design: fanned tree, only ≈53 rules executed per packet
Low rule density sounds like management overhead – need to keep
that in mind for later
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Xtables2 SSA prototype Test #1

Comparison with real rulesets

Jesper has down-to-earth rulesets:

662,160 visible rules in 151,426 chains: rule density distribution
> summary(data)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 4.000 4.477 4.000 144.000

Packed size is 156,258,112 bytes
Design: fanned tree, only ≈77 rules executed per packet
Low rule density sounds like management overhead – need to keep
that in mind for later
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Xtables2 SSA prototype Test #1

Test procedure

100,000× struct ip6t_entry

-A mychain$i -s ::1 -d ::1

Earlier tests with ping6 -f were flawed.

Testing proto2
ping6 -fqc 500 -i .001 localhost

Without rules, this gives 500 ms total execution time: packet
handling is quick, ping is just waiting for the intervals to expire.
-i .001 made sure that (with rules) no packets were reported
dropped
With rules, this goes up: once it starts going above 500 ms, we know
packet processing takes longer than the 1 ms interval.
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Xtables2 SSA prototype Test #1

Results

So-gathered statistics showed an execution time expansion of 4.30×
(xt1: 3500 ms → proto2: 15000 msec)
“Linked lists no good?”

Using ping this way was flawed... ping handles packets
asynchronously when using -f

Let’s reset.
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Xtables2 SSA prototype Test #2

Test procedure

Testing proto3 with revised command
ping6 -Ac 500 ::1

Observing ping’s RTT statistics rather than execution time
Additionally, I sampled the CPU cycle counter around xt2_do_table
and the ematch loop in xt2_do_actions

⇒ much more consistent results
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Xtables2 SSA prototype Test #2

Results

Expansion factor: 2.80× (xt1: 40.477 ms → proto3: 113.424 ms)
Increase expected (being a pessimist), but this much still blew
everything

Speculation: lots of D-cache misses3 due to the objects being “spread
out” in memory
Use of kmem_cache pools for objects of constant size (table, chain
and rule list heads) showed no improvement
And then there was memory...

3http://events.linuxfoundation.org/2010/linuxcon-japan/rowand –
Identifying Embedded Real-Time Latency Issues: I-Cache and Locks
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Xtables2 SSA prototype Memory considerations

Memory usage
Previously, with a blob:

1 vmalloc’d object of ≈20 MB

Now, split allocations...?
SL*B has to housekeep an 1,002,111 extra kmalloc’d objects now
Memory usage increase of 2.7× (i586). /proc/slabinfo:

≈900,000× size-32
≈100,000× size-192
48 MB, plus some housekeeping, for a total of ≈53 MB

Layman’s observation
# free; ip6tables-restore bigrules; free

used free
-/+ buffers/cache: 34056 1002172
-/+ buffers/cache: 86392 949836

⇒ Small scattered allocations are a no-go.
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Ideas for fixing
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Ideas for fixing Packed rulesets

Love for blobs

Evaluation of rules: we want no scattered allocs
Housekeeping: we want few allocs

Original iptables design decision pays off (Harald was right all along!)
packed ruleset allows for streaming reads
ipfw and pf use linked lists <°})))><

Let’s try concentrating on packed rulesets again (kernel side only)
Need to find ways to make working with them easier

A good API is half the job
Algorithms to keep the time cost of updating rulesets in-place low
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Ideas for fixing API guide

About APIs

Opaque macros/functions gone too opaque

IP6T_MATCH_ITERATE
struct compat_ip6t_entry *e = ...;
ret = COMPAT_IP6T_MATCH_ITERATE(e, compat_find_calc_match, name,

&e->ipv6, e->comefrom, &off, &j);

xt_ematch_foreach
struct compat_ip6t_entry *e = ...;
struct xt_entry_match *ematch;
xt_ematch_foreach(ematch, e) {

ret = compat_find_calc_match(ematch, name, &e->ipv6,
e->comefrom, &off);

if (ret != 0)
break;

++j;
}
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Ideas for fixing API guide

Implementation is also much friendlier to long-term maintainers
xt_ematch_foreach is KISS and may save function call overhead

IP6T_MATCH_ITERATE
#define XT_MATCH_ITERATE(type, e, fn, args...) \
({ \

unsigned int i; \
int ret; \
struct xt_entry_match *m; \
for (i = sizeof(type); i < e->target_offset; i += m->u.match_size) { \

m = e + i; \
ret = fn(m, ## args); \
if (ret != 0) \

break; \
} \
ret; \

})

xt_ematch_foreach
#define xt_ematch_foreach(pos, entry) \

for (pos = entry->elems; \
pos < entry + entry->target_offset; \
pos = pos + pos->u.match_size)
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Ideas for fixing Update cost considerations

Blobs for ¥100: Single rules

Xt1 blob rules refer to chains (when jumping) by their absolute offset
in the blob (i. e. bytes from the start of the blob)
Insertion or deletion of a chain/rule in a blob shifts the offset of all
subsequent chains
Requires updating the chain offsets of all jumping rules
With k rules already loaded, that is O (k)
Adding n rules leads to O

(
n2)

behavior – ouch
Userspace iptables(8) still submits entire tables, but translation
process does currently add one rule at a time to xt2 however
Important to keep in mind for future fine-grained modifications
initiated from userspace
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process does currently add one rule at a time to xt2 however
Important to keep in mind for future fine-grained modifications
initiated from userspace
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Ideas for fixing Update cost considerations

Blobs for ¥200: Bulk operations

Insertion of rules can be batched; reservation of enough bytes at once:

Multi-rule reservation also in O (k)
new = malloc(cur_size + x);
memcpy(new, cur_ruleset, ins_offset);
memcpy(new + ins_offset + x, cur_ruleset + ins_offset, cur_size -
ins_offset);

Process is similar for bulk deletion
Largest contiguous block is the set of rules of a chain
Therefore, with c chains, a bulk update would only be O (c · n)
Still suboptimal: Consider low rule density from earlier:
n
c → 1 =⇒ limc→n O (c · n) = O

(
n2)
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Ideas for fixing Update cost considerations

Blobs for ¥500: Indirect addressing

Can we get rid of the costly updates?

Yes, in two stages. Number one:

Indirect chain lookup
next_rule = tbl->blob +

tbl->chain_offset[rule->chain_index]

(cf. Xt1: next_rule = tbl->blob + rule->jump_offset)
On rule insertion/deletion, only chain_offset needs to be adjusted,
for O (c).
Still has other costs: chain head deletion is O (k) (can be mitigated
by lazy deletion).
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Xtables2 PCR prototype

Section TOC
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Xtables2 PCR prototype Data layout

Blobs for ¥1,000: Decoupled chains

Prediction/Assumption: Since jumps can go across the entire blob,
D-cache won’t help anyway
Loosen up on strict packing, just a little

Let largest contiguous entity be the chain rather than table
Combined with indirect chain lookup, no chain offset updates needed
at all.
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Xtables2 PCR prototype Data layout

xt2 sample chain head
struct xt2_chain {

char name[XT_EXTENSION_MAXNAMELEN];
void *rule_blob;

};

Jump action
struct xt2_packed_etarget *target;
next_rule = target->r_jump->rule_blob;

&some_xt2_chain always remains the same over its lifetime – no
more updates of rules required
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Xtables2 PCR prototype Test #3

Results

100k rules like before, measuring RTT again

Testing RTT for proto4
ping6 -Ac 500 ::1

Observed expansion: 1.83× (xt1: 40.477 ms → proto4: 74.135 ms)
Splendid! Packed-chain rulesets work.
But what’s with the remaining 83%?
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Xtables2 PCR prototype Latency observations

Rule counters in Xtables2

xt2 rules carry absolutely nothing per default
Per-rule counters are temporarily implemented by using two xt_quota
ematches in upcounting mode

The “ipv6” match with -s ::1 -d ::1 runs in 200–300 cycles
One “quota” ematch takes prohibitely costly 4500 cycles
(In)significance of raw cycle counts
Does not tell whether PCR might still incur a bottleneck
Main function of xt_quota is only 19 LOC, but xt_ipv6’s is 79 LOC.
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Xtables2 PCR prototype Latency observations

Equal-power comparison

Just as costly
-A INPUT -s ::1 -d ::1 -m quota --grow -m quota --grow

Driving xt1 with xt_quota counters yields an RTT of 77.373 ms.

Xtables2 PCR (74.135 ms) is absolutely on par
xt_quota is the one and only bottleneck
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Xtables2 PCR prototype Latency observations

xt_quota analysis

Using the simplest possible counter implementation instead of
full-featured xt_quota, proto4 execution time drops to 44.254 ms.

Adding a kmalloc for a private data structure to this simple impl. and
time jumps to 50.733 ms (= +15%).
D-cache misses – again!?
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Conclusion

Section TOC
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Conclusion

Future

Roadmap:
Continue using packed rulesets for packet processing

Deemed solvable:
Optimize extensions to contain fewer far-away accesses

Deemed infeasbly solvable:
ebtables
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Conclusion

Questions

I know you have some!

K7: AMD K7 Athlon 1.66GHz (manuf. 2003) 256K cache 2.6.36
i7: Intel Core i7 920 4-core 2.67GHz (2009) 8MB 2.6.33
VM: VirtualBox machine 1-core on i7 2.6.36

Driver RTT K7 RTT i7 RTT VM
xt1 +2s 40.447 2.83 3.08
xt1 +1Q 58.882 5.18 11.47
xt1 +2Q 77.373 11.50 21.00
xt2-proto3 +2Q 113.424 n/a 24.47
xt2-proto4 +2Q 74.135 n/a 21.79
xt2-proto4 +2s 44.254 n/a n/a

nft +2s 57.8

s: simple local counters
Q: xt_quota-based counters
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