Xtables2: Love for blobs

Jan Engelhardt <jengelh@inai.de>

Presented at NFWS 2010

2010-Oct-18

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs

2010-Oct-18

1/1

]
Table of Contents

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 2/1

Section TOC

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 3/1

Current status

@ ip_tables started with a packed serialized ruleset (“blob” — binary
large object)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 4/1

Current status

@ ip_tables started with a packed serialized ruleset (“blob” — binary
large object)

@ ipb_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 4/1

Current status

@ ip_tables started with a packed serialized ruleset (“blob” — binary
large object)

@ ipb_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!

@ Changes to ip_tables could still be mirrored to ip6_tables and
arp_tables

@ ebtables took its own incompatible path of development

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 4/1

Current status

@ ip_tables started with a packed serialized ruleset (“blob” — binary
large object)

@ ip6_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!

o Changes to ip_tables could still be mirrored to ip6_tables and
arp_tables

@ ebtables took its own incompatible path of development

@ Combined with compat support, there are now seven formats to
support in the kernel

@ A big itch to scratch.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18

4/1

Current status

@ ip_tables started with a packed serialized ruleset (“blob” — binary
large object)

@ ip6_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!

o Changes to ip_tables could still be mirrored to ip6_tables and
arp_tables

@ ebtables took its own incompatible path of development

@ Combined with compat support, there are now eight formats to
support in the kernel

e Eight itches to scrub.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18

4/1

A protocol-independent format

@ Rule tree without protocol-specific parts in it, to be used by and for
all protocol handlers

@ Translatation from and to input formats on-the-fly, i. e. during
SO_SET_REPLACE /etc.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 5/1

A protocol-independent format

@ Rule tree without protocol-specific parts in it, to be used by and for
all protocol handlers

@ Translatation from and to input formats on-the-fly, i. e. during
SO_SET_REPLACE /etc.

@ Formats are just minimally different: serialized stream of struct
ipt_entry vs. struct ip6t_entry

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 5/1

A protocol-independent format

@ Rule tree without protocol-specific parts in it, to be used by and for
all protocol handlers

@ Translatation from and to input formats on-the-fly, i. e. during
SO_SET_REPLACE /etc.

@ Formats are just minimally different: serialized stream of struct
ipt_entry vs. struct ip6t_entry

= Led to Xtables2

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18

5/1

Developments

SSA/LLY? style:

@ “protol”: initial submission on 2009-Aug-04 for v2.6.31-rc
(103 patches)

@ busy dealing with cleanups: 46/103

1Small scale allocations, or small scattered allocations, combined with linked
lists
2Has nothing to do with GCC's SSA

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18

6/1

Developments

SSA/LLY? style:
@ “protol”: initial submission on 2009-Aug-04 for v2.6.31-rc
(103 patches)
@ busy dealing with cleanups: 46/103

@ "proto2": partial set posted on 2010-Jun-04 for v2.6.35-rc
(33 patches, and a nasty surprise)

1Small scale allocations, or small scattered allocations, combined with linked
lists
2Has nothing to do with GCC's SSA

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18

6/1

Developments

SSA/LLY? style:
@ “protol”: initial submission on 2009-Aug-04 for v2.6.31-rc
(103 patches)
@ busy dealing with cleanups: 46/103

@ "proto2": partial set posted on 2010-Jun-04 for v2.6.35-rc
(33 patches, and a nasty surprise)

@ “proto3": simple rebase for v2.6.36-rc for better comparison with the
upcoming proto4

PCR style:

@ “proto4": xt2 using packed-chain rulesets, for v2.6.36-rc

1Small scale allocations, or small scattered allocations, combined with linked
lists
2Has nothing to do with GCC's SSA

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 6/1

Section TOC

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 7/1

Chosen data layout

@ Linked lists allow for “easy manipulation” of the ruleset

@ Small-scale allocations (SSA) are more easily satisfiable.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 8/1

Chosen data layout

@ Linked lists allow for “easy manipulation” of the ruleset
@ Small-scale allocations (SSA) are more easily satisfiable.

@ Prototype: Translators work nicely, and with a bit of macro magic,
eliminated 40% of LOC from the {ip,ip6,arp} combo.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 8/1

s 7l
Ruleset

@ Just a simple ruleset that would be large enough so that wall time is
visible

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 9/1

s 7l
Ruleset

@ Just a simple ruleset that would be large enough so that wall time is
visible

Just struct ip6t_entry, but lots of them

-A $chain -s ::1 -d ::1

@ no extensions, just struct ip6t_entry x 1000 rules x 100 chains
reachable from INPUT (OUTPUT is left empty)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 9/1

s 7l
Ruleset

@ Just a simple ruleset that would be large enough so that wall time is
visible

Just struct ip6t_entry, but lots of them

-A $chain -s ::1 -d ::1

@ no extensions, just struct ip6t_entry x 1000 rules x 100 chains
reachable from INPUT (OUTPUT is left empty)

@ 100,202 rules (100,000 base rules 4+ 100 calls + 100 implicit invisible
RETURNSs converted from Xtl + 2 implicit Xt1 RETURNs from base

chains)
@ ~20 MB in packed form

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 9/1

s 7l
Comparison with real rulesets

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 10/1

s 7l
Comparison with real rulesets

@ Jesper has down-to-earth rulesets:

67,892 visible rules in 18,329 chains: rule density distribution

> summary(data)
Min. 1st Qu. Median Mean 3rd Qu. Max .
1.000 1.000 2.000 3.745 4.000 119.000

@ Packed size is 16,866,200 bytes

@ Design: fanned tree, only =53 rules executed per packet

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 10/1

Xtables2 SSA prototype [EEESEIIN

Comparison with real rulesets

@ Jesper has down-to-earth rulesets:

67,892 visible rules in 18,329 chains: rule density distribution

> summary(data)
Min. 1st Qu. Median Mean 3rd Qu. Max .
1.000 1.000 2.000 3.745 4.000 119.000

@ Packed size is 16,866,200 bytes
@ Design: fanned tree, only =53 rules executed per packet

@ Low rule density sounds like management overhead — need to keep
that in mind for later

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 10/1

Xtables2 SSA prototype [EEESEIIN

Comparison with real rulesets

@ Jesper has down-to-earth rulesets:

662,160 visible rules in 151,426 chains: rule density distribution

> summary(data)
Min. 1st Qu. Median Mean 3rd Qu. Max .
1.000 1.000 4.000 4.477 4.000 144.000

@ Packed size is 156,258,112 bytes
@ Design: fanned tree, only =77 rules executed per packet

@ Low rule density sounds like management overhead — need to keep
that in mind for later

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 1 /1

s 7l
Test procedure

100,000x struct ip6t_entry
-A mychain$i -s ::1 -4 ::1

o Earlier tests with ping6 -f were flawed.

Testing proto2
ping6 -fqc 500 -i .001 localhost

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 12/1

s 7l
Test procedure

100,000x struct ip6t_entry
-A mychain$i -s ::1 -4 ::1

o Earlier tests with ping6 -f were flawed.

Testing proto2
ping6 -fqc 500 -i .001 localhost

o Without rules, this gives 500 ms total execution time: packet
handling is quick, ping is just waiting for the intervals to expire.

@ -i .001 made sure that (with rules) no packets were reported
dropped

@ With rules, this goes up: once it starts going above 500 ms, we know
packet processing takes longer than the 1 ms interval.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 12/1

s 7l
Results

@ So-gathered statistics showed an execution time expansion of 4.30x
(xtl: 3500 ms — proto2: 15000 msec)

@ “Linked lists no good?”

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 13/1

s 7l
Results

@ So-gathered statistics showed an execution time expansion of 4.30x
(xtl: 3500 ms — proto2: 15000 msec)

@ “Linked lists no good?”

@ Using ping this way was flawed... ping handles packets
asynchronously when using -f

@ Let's reset.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 13/1

s 72
Test procedure

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 14 /1

s 72
Test procedure

Testing proto3 with revised command
ping6 -Ac 500 ::1

@ Observing ping's RTT statistics rather than execution time

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 14 /1

s 72
Test procedure

Testing proto3 with revised command
ping6 -Ac 500 ::1

@ Observing ping's RTT statistics rather than execution time

o Additionally, | sampled the CPU cycle counter around xt2_do_table
and the ematch loop in xt2_do_actions

= much more consistent results

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 14 /1

s 72
Results

e Expansion factor: 2.80x (xtl: 40.477 ms — proto3: 113.424 ms)

@ Increase expected (being a pessimist), but this much still blew
everything

*http://events.linuxfoundation.org/2010/linuxcon- japan/rowand —
Identifying Embedded Real-Time Latency Issues: |-Cache and Locks
Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 15/1

http://events.linuxfoundation.org/2010/linuxcon-japan/rowand

Xtables2 SSA prototype [EEES#IY)

Results

e Expansion factor: 2.80x (xtl: 40.477 ms — proto3: 113.424 ms)

@ Increase expected (being a pessimist), but this much still blew
everything

@ Speculation: lots of D-cache misses® due to the objects being “spread
out” in memory

*http://events.linuxfoundation.org/2010/linuxcon- japan/rowand —
Identifying Embedded Real-Time Latency Issues: |-Cache and Locks
Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 15/1

http://events.linuxfoundation.org/2010/linuxcon-japan/rowand

s 72
Results

e Expansion factor: 2.80x (xtl: 40.477 ms — proto3: 113.424 ms)

@ Increase expected (being a pessimist), but this much still blew
everything

@ Speculation: lots of D-cache misses® due to the objects being “spread
out” in memory

@ Use of kmem_cache pools for objects of constant size (table, chain
and rule list heads) showed no improvement

*http://events.linuxfoundation.org/2010/linuxcon- japan/rowand —
Identifying Embedded Real-Time Latency Issues: |-Cache and Locks
Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 15/1

http://events.linuxfoundation.org/2010/linuxcon-japan/rowand

s 72
Results

e Expansion factor: 2.80x (xtl: 40.477 ms — proto3: 113.424 ms)

@ Increase expected (being a pessimist), but this much still blew
everything

@ Speculation: lots of D-cache misses® due to the objects being “spread
out” in memory

@ Use of kmem_cache pools for objects of constant size (table, chain
and rule list heads) showed no improvement

And then there was memory...

*http://events.linuxfoundation.org/2010/linuxcon- japan/rowand —
Identifying Embedded Real-Time Latency Issues: |-Cache and Locks
Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 15/1

http://events.linuxfoundation.org/2010/linuxcon-japan/rowand

Memory usage

Previously, with a blob:

@ 1 vmalloc'd object of ~20 MB

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 16 /1

Xtables2 SSA prototype Memory considerations

Memory usage

Previously, with a blob:

@ 1 vmalloc'd object of ~20 MB

Now, split allocations...?

@ SL*B has to housekeep an 1,002,111 extra kmalloc'd objects now

1x struct xt2_table
100x struct xt2_chains

100,201 x struct
100,201 x struct
100,201 x struct
200,402x struct
200,402x struct
200,402x struct
100,201 x struct

Jan Engelhardt (NFWS2010)

xt2_rules

xt2_entry_match for "ipv6”

ip6t_ip6 for “ipv6”

xt2_entry_match for “quota”

xt_quota for “quota”

xt_quota_priv for “quota”
xt2_entry_target for implicit CONTINUE

This is of course the other end of the two extremes.

Xtables2: Love for blobs 2010-Oct-18

16 /1

Memory usage

Previously, with a blob:
@ 1 vmalloc'd object of ~20 MB
Now, split allocations...?

@ SL*B has to housekeep an 1,002,111 extra kmalloc'd objects now
@ Memory usage increase of 2.7x (i586). /proc/slabinfo:

e ~900,000x size-32
e =~100,000x size-192
e 48 MB, plus some housekeeping, for a total of ~53 MB

Layman's observation

free; ip6tables-restore bigrules; free

used free
-/+ buffers/cache: 34056 1002172
-/+ buffers/cache: 86392 949836

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 16 /1

Memory usage

Previously, with a blob:
@ 1 vmalloc'd object of ~20 MB
Now, split allocations...?

@ SL*B has to housekeep an 1,002,111 extra kmalloc'd objects now
@ Memory usage increase of 2.7x (i586). /proc/slabinfo:

e ~900,000x size-32
e =~100,000x size-192
e 48 MB, plus some housekeeping, for a total of ~53 MB

Layman's observation

free; ip6tables-restore bigrules; free

used free
-/+ buffers/cache: 34056 1002172
-/+ buffers/cache: 86392 949836

=- Small scattered allocations are a no-go.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 16 /1

Section TOC

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 17 /1

Love for blobs

@ Evaluation of rules: we want no scattered allocs

@ Housekeeping: we want few allocs

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 18 /1

Love for blobs

@ Evaluation of rules: we want no scattered allocs
@ Housekeeping: we want few allocs
@ Original iptables design decision pays off (Harald was right all along!)

o packed ruleset allows for streaming reads
o ipfw and pf use linked lists <°})))><

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 18 /1

Love for blobs

@ Evaluation of rules: we want no scattered allocs
@ Housekeeping: we want few allocs
@ Original iptables design decision pays off (Harald was right all along!)

o packed ruleset allows for streaming reads
o ipfw and pf use linked lists <°})))><

@ Let's try concentrating on packed rulesets again (kernel side only)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 18 /1

Love for blobs

@ Evaluation of rules: we want no scattered allocs
@ Housekeeping: we want few allocs
@ Original iptables design decision pays off (Harald was right all along!)

o packed ruleset allows for streaming reads
o ipfw and pf use linked lists <°})))><

@ Let's try concentrating on packed rulesets again (kernel side only)

Need to find ways to make working with them easier

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 18 /1

Love for blobs

@ Evaluation of rules: we want no scattered allocs
@ Housekeeping: we want few allocs
@ Original iptables design decision pays off (Harald was right all along!)

o packed ruleset allows for streaming reads
o ipfw and pf use linked lists <°})))><

@ Let's try concentrating on packed rulesets again (kernel side only)
Need to find ways to make working with them easier

@ A good API is half the job
@ Algorithms to keep the time cost of updating rulesets in-place low

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 18 /1

About APls

e Opaque macros/functions gone too opaque

IP6T_MATCH_ITERATE

struct compat_ip6t_entry *e = ...;
ret = COMPAT_IP6T_MATCH_ITERATE(e, compat_find_calc_match, name,
&e->ipv6, e->comefrom, &off, &j);

xt_ematch_foreach

struct compat_ip6t_entry *e = ...;
struct xt_entry_match *ematch;
xt_ematch_foreach(ematch, e) {

ret = compat_find_calc_match(ematch, name, &e->ipv6,

e->comefrom, &off);
if (ret != 0)
break;
++7j;

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 19/1

[CEEER IR Al AP| guide

@ Implementation is also much friendlier to long-term maintainers

@ xt_ematch_foreach is KISS and may save function call overhead

IP6T_MATCH_ITERATE

#define XT_MATCH_ITERATE(type, e, fn, args...) \
o\
unsigned int i; \
int ret; \
struct xt_entry_match #m; \
for (i = sizeof(type); i < e->target_offset; i += m—>u.match_size) { \
m=e+i; \
ret = fn(m, ## args); \
if (ret !=0) \
break; \
A\
ret; \
B

xt_ematch_foreach

#define xt_ematch_foreach(pos, entry) \

for (pos = entry->elems; \
pos < entry + entry->target_offset; \
pos = pos + pos->u.match_size)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 20/1

Blobs for ¥100: Single rules

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 21 /1

Blobs for ¥100: Single rules

@ Xtl blob rules refer to chains (when jumping) by their absolute offset
in the blob (i.e. bytes from the start of the blob)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 21 /1

Blobs for ¥100: Single rules

@ Xtl blob rules refer to chains (when jumping) by their absolute offset
in the blob (i.e. bytes from the start of the blob)

@ Insertion or deletion of a chain/rule in a blob shifts the offset of all
subsequent chains

@ Requires updating the chain offsets of all jumping rules
e With k rules already loaded, that is O (k)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 21 /1

Blobs for ¥100: Single rules

@ Xtl blob rules refer to chains (when jumping) by their absolute offset
in the blob (i.e. bytes from the start of the blob)

@ Insertion or deletion of a chain/rule in a blob shifts the offset of all
subsequent chains

Requires updating the chain offsets of all jumping rules
With & rules already loaded, that is O (k)
Adding n rules leads to O (n?) behavior — ouch

Userspace iptables(8) still submits entire tables, but translation
process does currently add one rule at a time to xt2 however

@ Important to keep in mind for future fine-grained modifications
initiated from userspace

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 21 /1

Blobs for ¥200: Bulk operations

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 22/1

Blobs for ¥200: Bulk operations

@ Insertion of rules can be batched; reservation of enough bytes at once:

Multi-rule reservation also in O (k)

new = malloc(cur_size + x);
memcpy (new, cur_ruleset, ins_offset);
memcpy (new + ins_offset + x, cur_ruleset + ins_offset, cur_size -

ins_offset);

@ Process is similar for bulk deletion

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 22 /1

Blobs for ¥200: Bulk operations

@ Insertion of rules can be batched; reservation of enough bytes at once:

Multi-rule reservation also in O (k)

new = malloc(cur_size + x);
memcpy (new, cur_ruleset, ins_offset);
memcpy (new + ins_offset + x, cur_ruleset + ins_offset, cur_size -

ins_offset);

@ Process is similar for bulk deletion
@ Largest contiguous block is the set of rules of a chain

@ Therefore, with ¢ chains, a bulk update would only be O (¢ - n)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 22 /1

Blobs for ¥200: Bulk operations

@ Insertion of rules can be batched; reservation of enough bytes at once:

Multi-rule reservation also in O (k)

new = malloc(cur_size + x);
memcpy (new, cur_ruleset, ins_offset);
memcpy (new + ins_offset + x, cur_ruleset + ins_offset, cur_size -

ins_offset);

Process is similar for bulk deletion
Largest contiguous block is the set of rules of a chain

Therefore, with ¢ chains, a bulk update would only be O (¢ - n)

e 6 o6 o

Still suboptimal: Consider low rule density from earlier:
2 1= limesy, O(c-n) =0 (n?)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 22 /1

Blobs for ¥500: Indirect addressing

@ Can we get rid of the costly updates?

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 23 /1

Blobs for ¥500: Indirect addressing

@ Can we get rid of the costly updates?

Yes, in two stages. Number one:

Indirect chain lookup
next_rule = tbl->blob +
tbl->chain_offset[rule->chain_index]

@ (cf. Xtl: next_rule = tbl->blob + rule->jump_offset)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 23 /1

Blobs for ¥500: Indirect addressing

@ Can we get rid of the costly updates?

Yes, in two stages. Number one:

Indirect chain lookup
next_rule = tbl->blob +
tbl->chain_offset[rule->chain_index]

@ (cf. Xtl: next_rule = tbl->blob + rule->jump_offset)

@ On rule insertion/deletion, only chain_offset needs to be adjusted,
for O (¢).

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 23 /1

Blobs for ¥500: Indirect addressing

@ Can we get rid of the costly updates?

Yes, in two stages. Number one:

Indirect chain lookup
next_rule = tbl->blob +
tbl->chain_offset[rule->chain_index]

@ (cf. Xtl: next_rule = tbl->blob + rule->jump_offset)

@ On rule insertion/deletion, only chain_offset needs to be adjusted,
for O (¢).

o Still has other costs: chain head deletion is O (k) (can be mitigated
by lazy deletion).

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 23 /1

Section TOC

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 24 /1

Blobs for ¥1,000: Decoupled chains

e Prediction/Assumption: Since jumps can go across the entire blob,
D-cache won't help anyway

@ Loosen up on strict packing, just a little

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 25 /1

Blobs for ¥1,000: Decoupled chains

e Prediction/Assumption: Since jumps can go across the entire blob,
D-cache won't help anyway

@ Loosen up on strict packing, just a little

o Let largest contiguous entity be the chain rather than table

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 25 /1

Blobs for ¥1,000: Decoupled chains

Prediction/Assumption: Since jumps can go across the entire blob,
D-cache won't help anyway

Loosen up on strict packing, just a little

Let largest contiguous entity be the chain rather than table

Combined with indirect chain lookup, no chain offset updates needed
at all.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 25 /1

Xtables2 PCR prototype Data layout

xt2 sample chain head

struct xt2_chain {
char name [XT_EXTENSION_MAXNAMELEN] ;
void *rule_blob;

};

struct xt2_packed_etarget *target;
next_rule = target->r_jump->rule_blob;

@ &some_xt2_chain always remains the same over its lifetime — no
more updates of rules required

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 26 /1

s 72
Results

@ 100k rules like before, measuring RTT again

Testing RTT for proto4

ping6 -Ac 500 ::1

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 27 /1

s 72
Results

@ 100k rules like before, measuring RTT again

Testing RTT for proto4
ping6 -Ac 500 ::1

@ Observed expansion: 1.83x (xtl: 40.477 ms — proto4: 74.135 ms)

@ Splendid! Packed-chain rulesets work.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 27 /1

s 72
Results

@ 100k rules like before, measuring RTT again

Testing RTT for proto4
ping6 -Ac 500 ::1

@ Observed expansion: 1.83x (xtl: 40.477 ms — proto4: 74.135 ms)
@ Splendid! Packed-chain rulesets work.
e But what's with the remaining 83%7?

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 27 /1

Rule counters in Xtables2

@ xt2 rules carry absolutely nothing per default

@ Per-rule counters are temporarily implemented by using two xt_quota
ematches in upcounting mode

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 28 /1

Rule counters in Xtables2

@ xt2 rules carry absolutely nothing per default

@ Per-rule counters are temporarily implemented by using two xt_quota
ematches in upcounting mode

e The “ipv6"” match with -s ::1 -d ::1 runs in 200-300 cycles
e One “quota” ematch takes prohibitely costly 4500 cycles

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 28 /1

Rule counters in Xtables2

@ xt2 rules carry absolutely nothing per default

@ Per-rule counters are temporarily implemented by using two xt_quota
ematches in upcounting mode

The "ipv6"” match with -s ::1 -d ::1 runs in 200-300 cycles

One “quota” ematch takes prohibitely costly 4500 cycles
(In)significance of raw cycle counts

Does not tell whether PCR might still incur a bottleneck

Main function of xt_quota is only 19 LOC, but xt_ipv6's is 79 LOC.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 28 /1

Equal-power comparison

—-A INPUT -s ::1 -d ::1 -m quota --grow —-m quota --grow

@ Driving xt1 with xt_quota counters yields an RTT of 77.373 ms.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 29 /1

Equal-power comparison

—-A INPUT -s ::1 -d ::1 -m quota --grow —-m quota --grow

@ Driving xt1 with xt_quota counters yields an RTT of 77.373 ms.
o Xtables2 PCR (74.135 ms) is absolutely on par
@ xt_quota is the one and only bottleneck

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 29 /1

xt_quota analysis

@ Using the simplest possible counter implementation instead of
full-featured xt_quota, proto4 execution time drops to 44.254 ms.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 30/1

xt_quota analysis

@ Using the simplest possible counter implementation instead of
full-featured xt_quota, proto4 execution time drops to 44.254 ms.

@ Adding a kmalloc for a private data structure to this simple impl. and
time jumps to 50.733 ms (= +15%).

@ D-cache misses — again!?

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 30/1

Section TOC

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 31/1

Conclusion

Future

Roadmap:

@ Continue using packed rulesets for packet processing
Deemed solvable:

@ Optimize extensions to contain fewer far-away accesses
Deemed infeasbly solvable:

@ ebtables

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 32/1

Questions

@ | know you have some!

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 33/1

Questions

e K7: AMD K7 Athlon 1.66GHz (manuf. 2003) 256K cache 2.6.36
@ i7: Intel Core i7 920 4-core 2.67GHz (2009) 8MB 2.6.33
@ VM: VirtualBox machine 1-core on i7 2.6.36

Driver RTT K7 RTTi7 RTT VM
xtl +2s 40.447 2.83 3.08
xtl +1Q 58.882 5.18 11.47
xtl +2Q 77.373 11.50 21.00
xt2-proto3 +2Q 113.424 n/a 24.47
xt2-proto4 +2Q 74.135 n/a 21.79
xt2-protod +2s 44.254 n/a n/a

@ s: simple local counters

@ Q: xt_quota-based counters

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 33/1

Questions

e K7: AMD K7 Athlon 1.66GHz (manuf. 2003) 256K cache 2.6.36
@ i7: Intel Core i7 920 4-core 2.67GHz (2009) 8MB 2.6.33
@ VM: VirtualBox machine 1-core on i7 2.6.36

Driver RTT K7 RTTi7 RTT VM
xtl +2s 40.447 2.83 3.08
xtl +1Q 58.882 5.18 11.47
xtl +2Q 77.373 11.50 21.00
xt2-proto3 +2Q 113.424 n/a 24.47
xt2-proto4 +2Q 74.135 n/a 21.79
xt2-protod +2s 44.254 n/a n/a
nft +2s 57.8

@ s: simple local counters

@ Q: xt_quota-based counters

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 33/1

	Introduction
	Xtables2 SSA prototype
	Ideas for fixing
	Xtables2 PCR prototype
	Conclusion

