
Xtables2: Love for blobs

Jan Engelhardt <jengelh@inai.de>

Presented at NFWS 2010

2010-Oct-18

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 1 / 1

Table of Contents

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 2 / 1

Introduction

Section TOC

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 3 / 1

Introduction Xtables1

Current status

ip_tables started with a packed serialized ruleset (“blob” – binary
large object)

ip6_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!
Changes to ip_tables could still be mirrored to ip6_tables and
arp_tables
ebtables took its own incompatible path of development
Combined with compat support, there are now formats to support in
the kernel

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 4 / 1

Introduction Xtables1

Current status

ip_tables started with a packed serialized ruleset (“blob” – binary
large object)
ip6_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!

Changes to ip_tables could still be mirrored to ip6_tables and
arp_tables
ebtables took its own incompatible path of development
Combined with compat support, there are now formats to support in
the kernel

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 4 / 1

Introduction Xtables1

Current status

ip_tables started with a packed serialized ruleset (“blob” – binary
large object)
ip6_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!
Changes to ip_tables could still be mirrored to ip6_tables and
arp_tables
ebtables took its own incompatible path of development

Combined with compat support, there are now formats to support in
the kernel

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 4 / 1

Introduction Xtables1

Current status

ip_tables started with a packed serialized ruleset (“blob” – binary
large object)
ip6_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!
Changes to ip_tables could still be mirrored to ip6_tables and
arp_tables
ebtables took its own incompatible path of development
Combined with compat support, there are now seven formats to
support in the kernel
A big itch to scratch.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 4 / 1

Introduction Xtables1

Current status

ip_tables started with a packed serialized ruleset (“blob” – binary
large object)
ip6_tables is a copy-and-paste product of ip_tables. And so is
arp_tables. And so is ebtables. Yuck!
Changes to ip_tables could still be mirrored to ip6_tables and
arp_tables
ebtables took its own incompatible path of development
Combined with compat support, there are now eight formats to
support in the kernel
Eight itches to scrub.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 4 / 1

Introduction Xtables2 ideas (some)

A protocol-independent format

Rule tree without protocol-specific parts in it, to be used by and for
all protocol handlers
Translatation from and to input formats on-the-fly, i. e. during
SO_SET_REPLACE/etc.

Formats are just minimally different: serialized stream of struct
ipt_entry vs. struct ip6t_entry

⇒ Led to Xtables2

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 5 / 1

Introduction Xtables2 ideas (some)

A protocol-independent format

Rule tree without protocol-specific parts in it, to be used by and for
all protocol handlers
Translatation from and to input formats on-the-fly, i. e. during
SO_SET_REPLACE/etc.
Formats are just minimally different: serialized stream of struct
ipt_entry vs. struct ip6t_entry

⇒ Led to Xtables2

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 5 / 1

Introduction Xtables2 ideas (some)

A protocol-independent format

Rule tree without protocol-specific parts in it, to be used by and for
all protocol handlers
Translatation from and to input formats on-the-fly, i. e. during
SO_SET_REPLACE/etc.
Formats are just minimally different: serialized stream of struct
ipt_entry vs. struct ip6t_entry

⇒ Led to Xtables2

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 5 / 1

Introduction Xtables2 development history

Developments

SSA/LL1,2 style:
“proto1”: initial submission on 2009-Aug-04 for v2.6.31-rc
(103 patches)
busy dealing with cleanups: 46/103

“proto2”: partial set posted on 2010-Jun-04 for v2.6.35-rc
(33 patches, and a nasty surprise)
“proto3”: simple rebase for v2.6.36-rc for better comparison with the
upcoming proto4

PCR style:
“proto4”: xt2 using packed-chain rulesets, for v2.6.36-rc

1Small scale allocations, or small scattered allocations, combined with linked
lists

2Has nothing to do with GCC’s SSA
Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 6 / 1

Introduction Xtables2 development history

Developments

SSA/LL1,2 style:
“proto1”: initial submission on 2009-Aug-04 for v2.6.31-rc
(103 patches)
busy dealing with cleanups: 46/103
“proto2”: partial set posted on 2010-Jun-04 for v2.6.35-rc
(33 patches, and a nasty surprise)

“proto3”: simple rebase for v2.6.36-rc for better comparison with the
upcoming proto4

PCR style:
“proto4”: xt2 using packed-chain rulesets, for v2.6.36-rc

1Small scale allocations, or small scattered allocations, combined with linked
lists

2Has nothing to do with GCC’s SSA
Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 6 / 1

Introduction Xtables2 development history

Developments

SSA/LL1,2 style:
“proto1”: initial submission on 2009-Aug-04 for v2.6.31-rc
(103 patches)
busy dealing with cleanups: 46/103
“proto2”: partial set posted on 2010-Jun-04 for v2.6.35-rc
(33 patches, and a nasty surprise)
“proto3”: simple rebase for v2.6.36-rc for better comparison with the
upcoming proto4

PCR style:
“proto4”: xt2 using packed-chain rulesets, for v2.6.36-rc

1Small scale allocations, or small scattered allocations, combined with linked
lists

2Has nothing to do with GCC’s SSA
Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 6 / 1

Xtables2 SSA prototype

Section TOC

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 7 / 1

Xtables2 SSA prototype Data layout

Chosen data layout

Linked lists allow for “easy manipulation” of the ruleset
Small-scale allocations (SSA) are more easily satisfiable.

Prototype: Translators work nicely, and with a bit of macro magic,
eliminated 40% of LOC from the {ip,ip6,arp} combo.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 8 / 1

Xtables2 SSA prototype Data layout

Chosen data layout

Linked lists allow for “easy manipulation” of the ruleset
Small-scale allocations (SSA) are more easily satisfiable.
Prototype: Translators work nicely, and with a bit of macro magic,
eliminated 40% of LOC from the {ip,ip6,arp} combo.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 8 / 1

Xtables2 SSA prototype Test #1

Ruleset

Just a simple ruleset that would be large enough so that wall time is
visible

Just struct ip6t_entry, but lots of them
-A $chain -s ::1 -d ::1

no extensions, just struct ip6t_entry × 1000 rules × 100 chains
reachable from INPUT (OUTPUT is left empty)
100,202 rules (100,000 base rules + 100 calls + 100 implicit invisible
RETURNs converted from Xt1 + 2 implicit Xt1 RETURNs from base
chains)
≈20 MB in packed form

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 9 / 1

Xtables2 SSA prototype Test #1

Ruleset

Just a simple ruleset that would be large enough so that wall time is
visible

Just struct ip6t_entry, but lots of them
-A $chain -s ::1 -d ::1

no extensions, just struct ip6t_entry × 1000 rules × 100 chains
reachable from INPUT (OUTPUT is left empty)

100,202 rules (100,000 base rules + 100 calls + 100 implicit invisible
RETURNs converted from Xt1 + 2 implicit Xt1 RETURNs from base
chains)
≈20 MB in packed form

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 9 / 1

Xtables2 SSA prototype Test #1

Ruleset

Just a simple ruleset that would be large enough so that wall time is
visible

Just struct ip6t_entry, but lots of them
-A $chain -s ::1 -d ::1

no extensions, just struct ip6t_entry × 1000 rules × 100 chains
reachable from INPUT (OUTPUT is left empty)
100,202 rules (100,000 base rules + 100 calls + 100 implicit invisible
RETURNs converted from Xt1 + 2 implicit Xt1 RETURNs from base
chains)
≈20 MB in packed form

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 9 / 1

Xtables2 SSA prototype Test #1

Comparison with real rulesets

Jesper has down-to-earth rulesets:

67,892 visible rules in 18,329 chains: rule density distribution
> summary(data)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 2.000 3.745 4.000 119.000

Packed size is 16,866,200 bytes
Design: fanned tree, only ≈53 rules executed per packet
Low rule density sounds like management overhead – need to keep
that in mind for later

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 10 / 1

Xtables2 SSA prototype Test #1

Comparison with real rulesets

Jesper has down-to-earth rulesets:

67,892 visible rules in 18,329 chains: rule density distribution
> summary(data)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 2.000 3.745 4.000 119.000

Packed size is 16,866,200 bytes
Design: fanned tree, only ≈53 rules executed per packet

Low rule density sounds like management overhead – need to keep
that in mind for later

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 10 / 1

Xtables2 SSA prototype Test #1

Comparison with real rulesets

Jesper has down-to-earth rulesets:

67,892 visible rules in 18,329 chains: rule density distribution
> summary(data)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 2.000 3.745 4.000 119.000

Packed size is 16,866,200 bytes
Design: fanned tree, only ≈53 rules executed per packet
Low rule density sounds like management overhead – need to keep
that in mind for later

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 10 / 1

Xtables2 SSA prototype Test #1

Comparison with real rulesets

Jesper has down-to-earth rulesets:

662,160 visible rules in 151,426 chains: rule density distribution
> summary(data)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 4.000 4.477 4.000 144.000

Packed size is 156,258,112 bytes
Design: fanned tree, only ≈77 rules executed per packet
Low rule density sounds like management overhead – need to keep
that in mind for later

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 11 / 1

Xtables2 SSA prototype Test #1

Test procedure

100,000× struct ip6t_entry

-A mychain$i -s ::1 -d ::1

Earlier tests with ping6 -f were flawed.

Testing proto2
ping6 -fqc 500 -i .001 localhost

Without rules, this gives 500 ms total execution time: packet
handling is quick, ping is just waiting for the intervals to expire.
-i .001 made sure that (with rules) no packets were reported
dropped
With rules, this goes up: once it starts going above 500 ms, we know
packet processing takes longer than the 1 ms interval.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 12 / 1

Xtables2 SSA prototype Test #1

Test procedure

100,000× struct ip6t_entry

-A mychain$i -s ::1 -d ::1

Earlier tests with ping6 -f were flawed.

Testing proto2
ping6 -fqc 500 -i .001 localhost

Without rules, this gives 500 ms total execution time: packet
handling is quick, ping is just waiting for the intervals to expire.
-i .001 made sure that (with rules) no packets were reported
dropped
With rules, this goes up: once it starts going above 500 ms, we know
packet processing takes longer than the 1 ms interval.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 12 / 1

Xtables2 SSA prototype Test #1

Results

So-gathered statistics showed an execution time expansion of 4.30×
(xt1: 3500 ms → proto2: 15000 msec)
“Linked lists no good?”

Using ping this way was flawed... ping handles packets
asynchronously when using -f

Let’s reset.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 13 / 1

Xtables2 SSA prototype Test #1

Results

So-gathered statistics showed an execution time expansion of 4.30×
(xt1: 3500 ms → proto2: 15000 msec)
“Linked lists no good?”
Using ping this way was flawed... ping handles packets
asynchronously when using -f

Let’s reset.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 13 / 1

Xtables2 SSA prototype Test #2

Test procedure

Testing proto3 with revised command
ping6 -Ac 500 ::1

Observing ping’s RTT statistics rather than execution time
Additionally, I sampled the CPU cycle counter around xt2_do_table
and the ematch loop in xt2_do_actions

⇒ much more consistent results

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 14 / 1

Xtables2 SSA prototype Test #2

Test procedure

Testing proto3 with revised command
ping6 -Ac 500 ::1

Observing ping’s RTT statistics rather than execution time

Additionally, I sampled the CPU cycle counter around xt2_do_table
and the ematch loop in xt2_do_actions

⇒ much more consistent results

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 14 / 1

Xtables2 SSA prototype Test #2

Test procedure

Testing proto3 with revised command
ping6 -Ac 500 ::1

Observing ping’s RTT statistics rather than execution time
Additionally, I sampled the CPU cycle counter around xt2_do_table
and the ematch loop in xt2_do_actions

⇒ much more consistent results

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 14 / 1

Xtables2 SSA prototype Test #2

Results

Expansion factor: 2.80× (xt1: 40.477 ms → proto3: 113.424 ms)
Increase expected (being a pessimist), but this much still blew
everything

Speculation: lots of D-cache misses3 due to the objects being “spread
out” in memory
Use of kmem_cache pools for objects of constant size (table, chain
and rule list heads) showed no improvement
And then there was memory...

3http://events.linuxfoundation.org/2010/linuxcon-japan/rowand –
Identifying Embedded Real-Time Latency Issues: I-Cache and Locks

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 15 / 1

http://events.linuxfoundation.org/2010/linuxcon-japan/rowand

Xtables2 SSA prototype Test #2

Results

Expansion factor: 2.80× (xt1: 40.477 ms → proto3: 113.424 ms)
Increase expected (being a pessimist), but this much still blew
everything
Speculation: lots of D-cache misses3 due to the objects being “spread
out” in memory

Use of kmem_cache pools for objects of constant size (table, chain
and rule list heads) showed no improvement
And then there was memory...

3http://events.linuxfoundation.org/2010/linuxcon-japan/rowand –
Identifying Embedded Real-Time Latency Issues: I-Cache and Locks

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 15 / 1

http://events.linuxfoundation.org/2010/linuxcon-japan/rowand

Xtables2 SSA prototype Test #2

Results

Expansion factor: 2.80× (xt1: 40.477 ms → proto3: 113.424 ms)
Increase expected (being a pessimist), but this much still blew
everything
Speculation: lots of D-cache misses3 due to the objects being “spread
out” in memory
Use of kmem_cache pools for objects of constant size (table, chain
and rule list heads) showed no improvement

And then there was memory...

3http://events.linuxfoundation.org/2010/linuxcon-japan/rowand –
Identifying Embedded Real-Time Latency Issues: I-Cache and Locks

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 15 / 1

http://events.linuxfoundation.org/2010/linuxcon-japan/rowand

Xtables2 SSA prototype Test #2

Results

Expansion factor: 2.80× (xt1: 40.477 ms → proto3: 113.424 ms)
Increase expected (being a pessimist), but this much still blew
everything
Speculation: lots of D-cache misses3 due to the objects being “spread
out” in memory
Use of kmem_cache pools for objects of constant size (table, chain
and rule list heads) showed no improvement
And then there was memory...

3http://events.linuxfoundation.org/2010/linuxcon-japan/rowand –
Identifying Embedded Real-Time Latency Issues: I-Cache and Locks

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 15 / 1

http://events.linuxfoundation.org/2010/linuxcon-japan/rowand

Xtables2 SSA prototype Memory considerations

Memory usage
Previously, with a blob:

1 vmalloc’d object of ≈20 MB

Now, split allocations...?
SL*B has to housekeep an 1,002,111 extra kmalloc’d objects now
Memory usage increase of 2.7× (i586). /proc/slabinfo:

≈900,000× size-32
≈100,000× size-192
48 MB, plus some housekeeping, for a total of ≈53 MB

Layman’s observation
free; ip6tables-restore bigrules; free

used free
-/+ buffers/cache: 34056 1002172
-/+ buffers/cache: 86392 949836

⇒ Small scattered allocations are a no-go.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 16 / 1

Xtables2 SSA prototype Memory considerations

Memory usage
Previously, with a blob:

1 vmalloc’d object of ≈20 MB
Now, split allocations...?

SL*B has to housekeep an 1,002,111 extra kmalloc’d objects now
1× struct xt2_table
100× struct xt2_chains
100,201× struct xt2_rules
100,201× struct xt2_entry_match for “ipv6”
100,201× struct ip6t_ip6 for “ipv6”
200,402× struct xt2_entry_match for “quota”
200,402× struct xt_quota for “quota”
200,402× struct xt_quota_priv for “quota”
100,201× struct xt2_entry_target for implicit CONTINUE
This is of course the other end of the two extremes.

Memory usage increase of 2.7× (i586). /proc/slabinfo:
≈900,000× size-32
≈100,000× size-192
48 MB, plus some housekeeping, for a total of ≈53 MB

Layman’s observation
free; ip6tables-restore bigrules; free

used free
-/+ buffers/cache: 34056 1002172
-/+ buffers/cache: 86392 949836

⇒ Small scattered allocations are a no-go.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 16 / 1

Xtables2 SSA prototype Memory considerations

Memory usage
Previously, with a blob:

1 vmalloc’d object of ≈20 MB
Now, split allocations...?

SL*B has to housekeep an 1,002,111 extra kmalloc’d objects now
Memory usage increase of 2.7× (i586). /proc/slabinfo:

≈900,000× size-32
≈100,000× size-192
48 MB, plus some housekeeping, for a total of ≈53 MB

Layman’s observation
free; ip6tables-restore bigrules; free

used free
-/+ buffers/cache: 34056 1002172
-/+ buffers/cache: 86392 949836

⇒ Small scattered allocations are a no-go.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 16 / 1

Xtables2 SSA prototype Memory considerations

Memory usage
Previously, with a blob:

1 vmalloc’d object of ≈20 MB
Now, split allocations...?

SL*B has to housekeep an 1,002,111 extra kmalloc’d objects now
Memory usage increase of 2.7× (i586). /proc/slabinfo:

≈900,000× size-32
≈100,000× size-192
48 MB, plus some housekeeping, for a total of ≈53 MB

Layman’s observation
free; ip6tables-restore bigrules; free

used free
-/+ buffers/cache: 34056 1002172
-/+ buffers/cache: 86392 949836

⇒ Small scattered allocations are a no-go.
Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 16 / 1

Ideas for fixing

Section TOC

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 17 / 1

Ideas for fixing Packed rulesets

Love for blobs

Evaluation of rules: we want no scattered allocs
Housekeeping: we want few allocs

Original iptables design decision pays off (Harald was right all along!)
packed ruleset allows for streaming reads
ipfw and pf use linked lists <°})))><

Let’s try concentrating on packed rulesets again (kernel side only)
Need to find ways to make working with them easier

A good API is half the job
Algorithms to keep the time cost of updating rulesets in-place low

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 18 / 1

Ideas for fixing Packed rulesets

Love for blobs

Evaluation of rules: we want no scattered allocs
Housekeeping: we want few allocs
Original iptables design decision pays off (Harald was right all along!)

packed ruleset allows for streaming reads
ipfw and pf use linked lists <°})))><

Let’s try concentrating on packed rulesets again (kernel side only)
Need to find ways to make working with them easier

A good API is half the job
Algorithms to keep the time cost of updating rulesets in-place low

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 18 / 1

Ideas for fixing Packed rulesets

Love for blobs

Evaluation of rules: we want no scattered allocs
Housekeeping: we want few allocs
Original iptables design decision pays off (Harald was right all along!)

packed ruleset allows for streaming reads
ipfw and pf use linked lists <°})))><

Let’s try concentrating on packed rulesets again (kernel side only)

Need to find ways to make working with them easier
A good API is half the job
Algorithms to keep the time cost of updating rulesets in-place low

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 18 / 1

Ideas for fixing Packed rulesets

Love for blobs

Evaluation of rules: we want no scattered allocs
Housekeeping: we want few allocs
Original iptables design decision pays off (Harald was right all along!)

packed ruleset allows for streaming reads
ipfw and pf use linked lists <°})))><

Let’s try concentrating on packed rulesets again (kernel side only)
Need to find ways to make working with them easier

A good API is half the job
Algorithms to keep the time cost of updating rulesets in-place low

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 18 / 1

Ideas for fixing Packed rulesets

Love for blobs

Evaluation of rules: we want no scattered allocs
Housekeeping: we want few allocs
Original iptables design decision pays off (Harald was right all along!)

packed ruleset allows for streaming reads
ipfw and pf use linked lists <°})))><

Let’s try concentrating on packed rulesets again (kernel side only)
Need to find ways to make working with them easier

A good API is half the job
Algorithms to keep the time cost of updating rulesets in-place low

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 18 / 1

Ideas for fixing API guide

About APIs

Opaque macros/functions gone too opaque

IP6T_MATCH_ITERATE
struct compat_ip6t_entry *e = ...;
ret = COMPAT_IP6T_MATCH_ITERATE(e, compat_find_calc_match, name,

&e->ipv6, e->comefrom, &off, &j);

xt_ematch_foreach
struct compat_ip6t_entry *e = ...;
struct xt_entry_match *ematch;
xt_ematch_foreach(ematch, e) {

ret = compat_find_calc_match(ematch, name, &e->ipv6,
e->comefrom, &off);

if (ret != 0)
break;

++j;
}

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 19 / 1

Ideas for fixing API guide

Implementation is also much friendlier to long-term maintainers
xt_ematch_foreach is KISS and may save function call overhead

IP6T_MATCH_ITERATE
#define XT_MATCH_ITERATE(type, e, fn, args...) \
({ \

unsigned int i; \
int ret; \
struct xt_entry_match *m; \
for (i = sizeof(type); i < e->target_offset; i += m->u.match_size) { \

m = e + i; \
ret = fn(m, ## args); \
if (ret != 0) \

break; \
} \
ret; \

})

xt_ematch_foreach
#define xt_ematch_foreach(pos, entry) \

for (pos = entry->elems; \
pos < entry + entry->target_offset; \
pos = pos + pos->u.match_size)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 20 / 1

Ideas for fixing Update cost considerations

Blobs for ¥100: Single rules

Xt1 blob rules refer to chains (when jumping) by their absolute offset
in the blob (i. e. bytes from the start of the blob)
Insertion or deletion of a chain/rule in a blob shifts the offset of all
subsequent chains
Requires updating the chain offsets of all jumping rules
With k rules already loaded, that is O (k)
Adding n rules leads to O

(
n2)

behavior – ouch
Userspace iptables(8) still submits entire tables, but translation
process does currently add one rule at a time to xt2 however
Important to keep in mind for future fine-grained modifications
initiated from userspace

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 21 / 1

Ideas for fixing Update cost considerations

Blobs for ¥100: Single rules

Xt1 blob rules refer to chains (when jumping) by their absolute offset
in the blob (i. e. bytes from the start of the blob)

Insertion or deletion of a chain/rule in a blob shifts the offset of all
subsequent chains
Requires updating the chain offsets of all jumping rules
With k rules already loaded, that is O (k)
Adding n rules leads to O

(
n2)

behavior – ouch
Userspace iptables(8) still submits entire tables, but translation
process does currently add one rule at a time to xt2 however
Important to keep in mind for future fine-grained modifications
initiated from userspace

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 21 / 1

Ideas for fixing Update cost considerations

Blobs for ¥100: Single rules

Xt1 blob rules refer to chains (when jumping) by their absolute offset
in the blob (i. e. bytes from the start of the blob)
Insertion or deletion of a chain/rule in a blob shifts the offset of all
subsequent chains
Requires updating the chain offsets of all jumping rules
With k rules already loaded, that is O (k)

Adding n rules leads to O
(
n2)

behavior – ouch
Userspace iptables(8) still submits entire tables, but translation
process does currently add one rule at a time to xt2 however
Important to keep in mind for future fine-grained modifications
initiated from userspace

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 21 / 1

Ideas for fixing Update cost considerations

Blobs for ¥100: Single rules

Xt1 blob rules refer to chains (when jumping) by their absolute offset
in the blob (i. e. bytes from the start of the blob)
Insertion or deletion of a chain/rule in a blob shifts the offset of all
subsequent chains
Requires updating the chain offsets of all jumping rules
With k rules already loaded, that is O (k)
Adding n rules leads to O

(
n2)

behavior – ouch
Userspace iptables(8) still submits entire tables, but translation
process does currently add one rule at a time to xt2 however
Important to keep in mind for future fine-grained modifications
initiated from userspace

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 21 / 1

Ideas for fixing Update cost considerations

Blobs for ¥200: Bulk operations

Insertion of rules can be batched; reservation of enough bytes at once:

Multi-rule reservation also in O (k)
new = malloc(cur_size + x);
memcpy(new, cur_ruleset, ins_offset);
memcpy(new + ins_offset + x, cur_ruleset + ins_offset, cur_size -
ins_offset);

Process is similar for bulk deletion
Largest contiguous block is the set of rules of a chain
Therefore, with c chains, a bulk update would only be O (c · n)
Still suboptimal: Consider low rule density from earlier:
n
c → 1 =⇒ limc→n O (c · n) = O

(
n2)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 22 / 1

Ideas for fixing Update cost considerations

Blobs for ¥200: Bulk operations

Insertion of rules can be batched; reservation of enough bytes at once:

Multi-rule reservation also in O (k)
new = malloc(cur_size + x);
memcpy(new, cur_ruleset, ins_offset);
memcpy(new + ins_offset + x, cur_ruleset + ins_offset, cur_size -
ins_offset);

Process is similar for bulk deletion

Largest contiguous block is the set of rules of a chain
Therefore, with c chains, a bulk update would only be O (c · n)
Still suboptimal: Consider low rule density from earlier:
n
c → 1 =⇒ limc→n O (c · n) = O

(
n2)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 22 / 1

Ideas for fixing Update cost considerations

Blobs for ¥200: Bulk operations

Insertion of rules can be batched; reservation of enough bytes at once:

Multi-rule reservation also in O (k)
new = malloc(cur_size + x);
memcpy(new, cur_ruleset, ins_offset);
memcpy(new + ins_offset + x, cur_ruleset + ins_offset, cur_size -
ins_offset);

Process is similar for bulk deletion
Largest contiguous block is the set of rules of a chain
Therefore, with c chains, a bulk update would only be O (c · n)

Still suboptimal: Consider low rule density from earlier:
n
c → 1 =⇒ limc→n O (c · n) = O

(
n2)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 22 / 1

Ideas for fixing Update cost considerations

Blobs for ¥200: Bulk operations

Insertion of rules can be batched; reservation of enough bytes at once:

Multi-rule reservation also in O (k)
new = malloc(cur_size + x);
memcpy(new, cur_ruleset, ins_offset);
memcpy(new + ins_offset + x, cur_ruleset + ins_offset, cur_size -
ins_offset);

Process is similar for bulk deletion
Largest contiguous block is the set of rules of a chain
Therefore, with c chains, a bulk update would only be O (c · n)
Still suboptimal: Consider low rule density from earlier:
n
c → 1 =⇒ limc→n O (c · n) = O

(
n2)

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 22 / 1

Ideas for fixing Update cost considerations

Blobs for ¥500: Indirect addressing

Can we get rid of the costly updates?

Yes, in two stages. Number one:

Indirect chain lookup
next_rule = tbl->blob +

tbl->chain_offset[rule->chain_index]

(cf. Xt1: next_rule = tbl->blob + rule->jump_offset)
On rule insertion/deletion, only chain_offset needs to be adjusted,
for O (c).
Still has other costs: chain head deletion is O (k) (can be mitigated
by lazy deletion).

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 23 / 1

Ideas for fixing Update cost considerations

Blobs for ¥500: Indirect addressing

Can we get rid of the costly updates?
Yes, in two stages. Number one:

Indirect chain lookup
next_rule = tbl->blob +

tbl->chain_offset[rule->chain_index]

(cf. Xt1: next_rule = tbl->blob + rule->jump_offset)

On rule insertion/deletion, only chain_offset needs to be adjusted,
for O (c).
Still has other costs: chain head deletion is O (k) (can be mitigated
by lazy deletion).

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 23 / 1

Ideas for fixing Update cost considerations

Blobs for ¥500: Indirect addressing

Can we get rid of the costly updates?
Yes, in two stages. Number one:

Indirect chain lookup
next_rule = tbl->blob +

tbl->chain_offset[rule->chain_index]

(cf. Xt1: next_rule = tbl->blob + rule->jump_offset)
On rule insertion/deletion, only chain_offset needs to be adjusted,
for O (c).

Still has other costs: chain head deletion is O (k) (can be mitigated
by lazy deletion).

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 23 / 1

Ideas for fixing Update cost considerations

Blobs for ¥500: Indirect addressing

Can we get rid of the costly updates?
Yes, in two stages. Number one:

Indirect chain lookup
next_rule = tbl->blob +

tbl->chain_offset[rule->chain_index]

(cf. Xt1: next_rule = tbl->blob + rule->jump_offset)
On rule insertion/deletion, only chain_offset needs to be adjusted,
for O (c).
Still has other costs: chain head deletion is O (k) (can be mitigated
by lazy deletion).

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 23 / 1

Xtables2 PCR prototype

Section TOC

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 24 / 1

Xtables2 PCR prototype Data layout

Blobs for ¥1,000: Decoupled chains

Prediction/Assumption: Since jumps can go across the entire blob,
D-cache won’t help anyway
Loosen up on strict packing, just a little

Let largest contiguous entity be the chain rather than table
Combined with indirect chain lookup, no chain offset updates needed
at all.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 25 / 1

Xtables2 PCR prototype Data layout

Blobs for ¥1,000: Decoupled chains

Prediction/Assumption: Since jumps can go across the entire blob,
D-cache won’t help anyway
Loosen up on strict packing, just a little
Let largest contiguous entity be the chain rather than table

Combined with indirect chain lookup, no chain offset updates needed
at all.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 25 / 1

Xtables2 PCR prototype Data layout

Blobs for ¥1,000: Decoupled chains

Prediction/Assumption: Since jumps can go across the entire blob,
D-cache won’t help anyway
Loosen up on strict packing, just a little
Let largest contiguous entity be the chain rather than table
Combined with indirect chain lookup, no chain offset updates needed
at all.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 25 / 1

Xtables2 PCR prototype Data layout

xt2 sample chain head
struct xt2_chain {

char name[XT_EXTENSION_MAXNAMELEN];
void *rule_blob;

};

Jump action
struct xt2_packed_etarget *target;
next_rule = target->r_jump->rule_blob;

&some_xt2_chain always remains the same over its lifetime – no
more updates of rules required

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 26 / 1

Xtables2 PCR prototype Test #3

Results

100k rules like before, measuring RTT again

Testing RTT for proto4
ping6 -Ac 500 ::1

Observed expansion: 1.83× (xt1: 40.477 ms → proto4: 74.135 ms)
Splendid! Packed-chain rulesets work.
But what’s with the remaining 83%?

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 27 / 1

Xtables2 PCR prototype Test #3

Results

100k rules like before, measuring RTT again

Testing RTT for proto4
ping6 -Ac 500 ::1

Observed expansion: 1.83× (xt1: 40.477 ms → proto4: 74.135 ms)
Splendid! Packed-chain rulesets work.

But what’s with the remaining 83%?

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 27 / 1

Xtables2 PCR prototype Test #3

Results

100k rules like before, measuring RTT again

Testing RTT for proto4
ping6 -Ac 500 ::1

Observed expansion: 1.83× (xt1: 40.477 ms → proto4: 74.135 ms)
Splendid! Packed-chain rulesets work.
But what’s with the remaining 83%?

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 27 / 1

Xtables2 PCR prototype Latency observations

Rule counters in Xtables2

xt2 rules carry absolutely nothing per default
Per-rule counters are temporarily implemented by using two xt_quota
ematches in upcounting mode

The “ipv6” match with -s ::1 -d ::1 runs in 200–300 cycles
One “quota” ematch takes prohibitely costly 4500 cycles
(In)significance of raw cycle counts
Does not tell whether PCR might still incur a bottleneck
Main function of xt_quota is only 19 LOC, but xt_ipv6’s is 79 LOC.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 28 / 1

Xtables2 PCR prototype Latency observations

Rule counters in Xtables2

xt2 rules carry absolutely nothing per default
Per-rule counters are temporarily implemented by using two xt_quota
ematches in upcounting mode

The “ipv6” match with -s ::1 -d ::1 runs in 200–300 cycles
One “quota” ematch takes prohibitely costly 4500 cycles

(In)significance of raw cycle counts
Does not tell whether PCR might still incur a bottleneck
Main function of xt_quota is only 19 LOC, but xt_ipv6’s is 79 LOC.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 28 / 1

Xtables2 PCR prototype Latency observations

Rule counters in Xtables2

xt2 rules carry absolutely nothing per default
Per-rule counters are temporarily implemented by using two xt_quota
ematches in upcounting mode

The “ipv6” match with -s ::1 -d ::1 runs in 200–300 cycles
One “quota” ematch takes prohibitely costly 4500 cycles
(In)significance of raw cycle counts
Does not tell whether PCR might still incur a bottleneck
Main function of xt_quota is only 19 LOC, but xt_ipv6’s is 79 LOC.

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 28 / 1

Xtables2 PCR prototype Latency observations

Equal-power comparison

Just as costly
-A INPUT -s ::1 -d ::1 -m quota --grow -m quota --grow

Driving xt1 with xt_quota counters yields an RTT of 77.373 ms.

Xtables2 PCR (74.135 ms) is absolutely on par
xt_quota is the one and only bottleneck

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 29 / 1

Xtables2 PCR prototype Latency observations

Equal-power comparison

Just as costly
-A INPUT -s ::1 -d ::1 -m quota --grow -m quota --grow

Driving xt1 with xt_quota counters yields an RTT of 77.373 ms.
Xtables2 PCR (74.135 ms) is absolutely on par
xt_quota is the one and only bottleneck

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 29 / 1

Xtables2 PCR prototype Latency observations

xt_quota analysis

Using the simplest possible counter implementation instead of
full-featured xt_quota, proto4 execution time drops to 44.254 ms.

Adding a kmalloc for a private data structure to this simple impl. and
time jumps to 50.733 ms (= +15%).
D-cache misses – again!?

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 30 / 1

Xtables2 PCR prototype Latency observations

xt_quota analysis

Using the simplest possible counter implementation instead of
full-featured xt_quota, proto4 execution time drops to 44.254 ms.
Adding a kmalloc for a private data structure to this simple impl. and
time jumps to 50.733 ms (= +15%).
D-cache misses – again!?

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 30 / 1

Conclusion

Section TOC

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 31 / 1

Conclusion

Future

Roadmap:
Continue using packed rulesets for packet processing

Deemed solvable:
Optimize extensions to contain fewer far-away accesses

Deemed infeasbly solvable:
ebtables

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 32 / 1

Conclusion

Questions

I know you have some!

K7: AMD K7 Athlon 1.66GHz (manuf. 2003) 256K cache 2.6.36
i7: Intel Core i7 920 4-core 2.67GHz (2009) 8MB 2.6.33
VM: VirtualBox machine 1-core on i7 2.6.36

Driver RTT K7 RTT i7 RTT VM
xt1 +2s 40.447 2.83 3.08
xt1 +1Q 58.882 5.18 11.47
xt1 +2Q 77.373 11.50 21.00
xt2-proto3 +2Q 113.424 n/a 24.47
xt2-proto4 +2Q 74.135 n/a 21.79
xt2-proto4 +2s 44.254 n/a n/a

nft +2s 57.8

s: simple local counters
Q: xt_quota-based counters

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 33 / 1

Conclusion

Questions

K7: AMD K7 Athlon 1.66GHz (manuf. 2003) 256K cache 2.6.36
i7: Intel Core i7 920 4-core 2.67GHz (2009) 8MB 2.6.33
VM: VirtualBox machine 1-core on i7 2.6.36

Driver RTT K7 RTT i7 RTT VM
xt1 +2s 40.447 2.83 3.08
xt1 +1Q 58.882 5.18 11.47
xt1 +2Q 77.373 11.50 21.00
xt2-proto3 +2Q 113.424 n/a 24.47
xt2-proto4 +2Q 74.135 n/a 21.79
xt2-proto4 +2s 44.254 n/a n/a

nft +2s 57.8

s: simple local counters
Q: xt_quota-based counters

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 33 / 1

Conclusion

Questions

K7: AMD K7 Athlon 1.66GHz (manuf. 2003) 256K cache 2.6.36
i7: Intel Core i7 920 4-core 2.67GHz (2009) 8MB 2.6.33
VM: VirtualBox machine 1-core on i7 2.6.36

Driver RTT K7 RTT i7 RTT VM
xt1 +2s 40.447 2.83 3.08
xt1 +1Q 58.882 5.18 11.47
xt1 +2Q 77.373 11.50 21.00
xt2-proto3 +2Q 113.424 n/a 24.47
xt2-proto4 +2Q 74.135 n/a 21.79
xt2-proto4 +2s 44.254 n/a n/a
nft +2s 57.8

s: simple local counters
Q: xt_quota-based counters

Jan Engelhardt (NFWS2010) Xtables2: Love for blobs 2010-Oct-18 33 / 1

	Introduction
	Xtables2 SSA prototype
	Ideas for fixing
	Xtables2 PCR prototype
	Conclusion

